Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - o the side opposite the right angle is called the hypotenuse
 - \circ the side opposite the angle θ is called the opposite
 - o the side next to the angle θ is called the adjacent.

In a right-angled triangle:

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$

 \circ the ratio of the opposite side to the hypotenuse is the sine of angle θ ,

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

 \circ the ratio of the adjacent side to the hypotenuse is the cosine of angle θ ,

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

o the ratio of the opposite side to the adjacent side is the tangent of angle θ ,

- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: \sin^{-1} , \cos^{-1} , \tan^{-1} .
- The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1 Calculate the length of side x.

Give your answer correct to 3 significant figures.

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$

$$\cos 25^\circ = \frac{6}{x}$$

$$x = \frac{6}{\cos 25^{\circ}}$$

$$x = 6.6202675...$$

$$x = 6.62 \text{ cm}$$

- 1 Always start by labelling the sides.
- 2 You are given the adjacent and the hypotenuse so use the cosine ratio.
- 3 Substitute the sides and angle into the cosine ratio.
- 4 Rearrange to make *x* the subject.
- 5 Use your calculator to work out $6 \div \cos 25^{\circ}$.
- 6 Round your answer to 3 significant figures and write the units in your answer.

Example 2 Calculate the size of angle *x*. Give your answer correct to 3 significant figures.

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$

$$\tan x = \frac{3}{4.5}$$

$$x = \tan^{-1} \left(\frac{3}{4.5} \right)$$

x = 33.6900675...

$$x = 33.7^{\circ}$$

- 1 Always start by labelling the sides.
- 2 You are given the opposite and the adjacent so use the tangent ratio.
- 3 Substitute the sides and angle into the tangent ratio.
- 4 Use tan⁻¹ to find the angle.
- 5 Use your calculator to work out $tan^{-1}(3 \div 4.5)$.
- **6** Round your answer to 3 significant figures and write the units in your answer.

Example 3 Calculate the exact size of angle x.

- $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- $\tan x = \frac{\sqrt{3}}{3}$
- $x = 30^{\circ}$

- 1 Always start by labelling the sides.
- You are given the opposite and the adjacent so use the tangent ratio.
- 3 Substitute the sides and angle into the tangent ratio.
- 4 Use the table from the key points to find the angle.

Practice

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of x in each triangle.

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.1 The cosine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$

Examples

Example 4 Work out the length of side w.
Give your answer correct to 3 significant figures.

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$w^2 = 8^2 + 7^2 - 2 \times 8 \times 7 \times \cos 45^\circ$$

 $w^2 = 33.80404051...$

1 Always start by labelling the angles and sides.

- **2** Write the cosine rule to find the side.
- 3 Substitute the values a, b and A into the formula.
- 4 Use a calculator to find w^2 and then w.
- 5 Round your final answer to 3 significant figures and write the units in your answer.

$w = \sqrt{33.80404051}$	
w = 5.81 cm	

Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos\theta = \frac{10^2 + 7^2 - 15^2}{2 \times 10 \times 7}$$

$$\cos\theta = \frac{-76}{140}$$

$$\theta$$
 = 122.878 349...

$$\theta = 122.9^{\circ}$$

1 Always start by labelling the angles and sides.

- 2 Write the cosine rule to find the angle.
- **3** Substitute the values *a*, *b* and *c* into the formula.
- 4 Use \cos^{-1} to find the angle.
- 5 Use your calculator to work out $\cos^{-1}(-76 \div 140)$.
- 6 Round your answer to 1 decimal place and write the units in your answer.

Practice

Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

7 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- 8 a Work out the length of WY. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.2 The sine rule

Key points

• *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another
 opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Alternatively you can use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Examples

Example 6 Work out the length of side *x*. Give your answer correct to 3 significant figures.

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$

$$\frac{x}{\sin 36^\circ} = \frac{10}{\sin 75^\circ}$$

$$x = \frac{10 \times \sin 36^{\circ}}{\sin 75^{\circ}}$$

1 Always start by labelling the angles and sides.

- 2 Write the sine rule to find the side.
- 3 Substitute the values a, b, A and B into the formula.
- 4 Rearrange to make x the subject.

x = 6.09 cm

5 Round your answer to 3 significant figures and write the units in your

Example 7 Work out the size of angle θ . Give your answer correct to 1 decimal place.

 $\frac{\sin A}{a} = \frac{\sin B}{b}$

$$\frac{\sin\theta}{8} = \frac{\sin 127^{\circ}}{14}$$

$$\sin\theta = \frac{8 \times \sin 127^{\circ}}{14}$$

$$\theta = 27.2^{\circ}$$

- 1 Always start by labelling the angles and sides.
- 2 Write the sine rule to find the angle.
- 3 Substitute the values a, b, A and B into the formula.
- 4 Rearrange to make $\sin \theta$ the subject.
- 5 Use sin⁻¹ to find the angle. Round your answer to 1 decimal place and write the units in your answer.

Practice

9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

10 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- 11 a Work out the length of QS.
 Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.

The area of the triangle is $\frac{1}{2}ab\sin C$

Examples

Example 8 Find the area of the triangle.

$$Area = \frac{1}{2}ab\sin C$$

Area =
$$\frac{1}{2} \times 8 \times 5 \times \sin 82^{\circ}$$

Area = 19.805 361...

1 Always start by labelling the sides and angles of the triangle.

- 2 State the formula for the area of a triangle.
- 3 Substitute the values of a, b and C into the formula for the area of a triangle.
- 4 Use a calculator to find the area.
- 5 Round your answer to 3 significant figures and write the units in your answer.

$Area = 19.8 \text{ cm}^2$	

Practice

Work out the area of each triangle.
Give your answers correct to 3 significant figures.

a

b

c

13

The area of triangle XY Work out the length of 2

Rearrange the formula to make a side the subject.

Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures.

a

b

Hint:

For each one, decide whether to use the cosine or sine rule.

c

The area of triangle ABC is 86.7 cm².Work out the length of BC.Give your answer correct to 3 significant figures.

Answers

1	a d	6.49 cm 74.3 mm	b e	6.93 cm 7.39 cm	c f	2.80 cm 6.07 cm	
2	a 38.7°	36.9°	b	57.1°	c	47.0°	d
3	5.71	cm					
4	20.4°	0					
5	a $\sqrt{3}$	45° cm	b	1 cm	c	30°	d
6	a 9.70	6.46 cm cm	b	9.26 cm	c	70.8 mm	n d
7	a 93.6°	22.2°	b	52.9°	c	122.9°	d
8	a	13.7 cm	b	76.0°			
9	a 6.39	4.33 cm	b	15.0 cm	c	45.2 mm	n d
10	a 28.2°	42.8°	b	52.8°	c	53.6°	d
11	a	8.13 cm	b	32.3°			
12	a	18.1 cm ²	b	18.7 cm ²	c	693 mm	2
13	5.10	cm					
14	a 58.8°	6.29 cm	b	84.3°	c	5.73 cm	d
15	15.3	cm					